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Experimental investigation of universal parametric correlators using a vibrating plate

K. Schaadt1,2 and A. Kudrolli1
1Department of Physics, Clark University, Worcester, Massachusetts 01610

2Center for Chaos and Turbulence Studies, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen O” , Denmark
~Received 2 June 1999!

The parametric variation of the eigenfrequencies of a chaotic plate is measured and compared to random
matrix theory using recently calculated universal correlation functions. The sensitivity of the flexural modes of
the plate to pressure is used to isolate this symmetry class of modes and simplify the data analysis. The size of
the plate is used as the external parameter and the eigenvalues are observed to undergo one or two oscillations
in the experimental window. The correlations of the eigenvalues are in good agreement with statistical mea-
sures such as the parametric number variance, the velocity autocorrelation, and the intralevel velocity auto-
correlation derived for the Gaussian orthogonal ensemble of random matrix theory. Our results show that the
theory can be also applied to wave systems other than quantum systems.@S1063-651X~99!51310-X#

PACS number~s!: 05.45.2a, 46.70.De
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It has been widely recognized that the eigenvalues o
quantum system show universal features that depend onl
the presence or absence of chaos in the corresponding
sical or ray system@1–3#. The universality has been con
firmed using not only quantum systems, but also systems
obey an elastomechanical wave equation@4–6#. The differ-
ences in the statistical properties has been recognized t
due to the presence of level repulsion which were dem
strated as avoided crossings as a system parameter wa
ied. However, it was postulated only recently that the res
ing fluctuations of the energy levels also show univer
properties that are independent of the nature of the param
@7,8#.

When a quantum system is subjected to a perturbation
an external parameterX, the eigenvalues change and oscilla
as a function ofX. Using supersymmetry techniques, Simo
and Altshuler@7,8# were able to calculate the correlations
a function of external parameter for energy levels w
Wigner-Dyson distributions of random matrix theory~RMT!.
The agreement of their analytical results with numeri
simulations of disordered metallic rings and a chaotic billia
led them to the remarkable conjecture that correlations in
eigenvalues show universal features that areindependentof
the nature of the perturbation after appropriate normal
tion. Here the proper rescaling required to compare ac
different systems is given by expressing the energyE in units
of the local mean level spacingD, and the parameter in unit
of the square root of the local mean squared slope:

«5E/D x5AK S d«

dXD 2L X, ~1!

where« is the normalized energy andx is the rescaled ex
ternal parameter.

The conjecture was tested further with numerical simu
tions of a hydrogen atom in a magnetic field, where agr
ment was found over a certain parameter range, but sys
atic deviations were also found because the system is
partially chaotic@9#. Although some of the correlations hav
been indirectly tested in the conductance fluctuations of e
trons in ballistic cavities@10,11#, and also in microwave
PRE 601063-651X/99/60~4!/3479~4!/$15.00
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cavities@12# and quartz blocks@13# where bouncing-ball-like
modes complicate the analysis, there has been no report
direct experimental test of their universality.

In this paper, we report direct experimental evidence
the universality of the above mentioned parametric corre
tors. A freely vibrating plate with the shape of a Sinai s
dium @14# is used and the smooth motion of the eigenf
quencies is measured as a function of the size of the p
Two classes of uncoupled modes exist in an isotropic pl
flexural, for which the displacement is perpendicular to t
plane of the plate, andin-plane, for which the displacemen
is in the plane of the plate@15,17#. We are able to experi-
mentally isolate the flexural modes and therefore can s
plify the analysis by not having to consider problems as
ciated with mixed symmetries. The flexural modes obey
scalar equation for the displacementW perpendicular to the
plate:

~¹22k2!~¹21k2!W50, ~2!

wherek denotes the wave number. The dispersion relatio
given by

f 5
k2

2p
A EYh3

12r~12n2!
, ~3!

wheref is the frequency,h is the thickness of the plate,r is
the density,EY is Young’s modulus, andn is Poisson’s ratio.
Any solutionW of Eq. ~2! can be written as a superpositio
of two modes,W1 andW2, where

~¹21k2!W150, and ~¹22k2!W250. ~4!

W1 is a solution to the Helmholtz equation with free boun
ary conditions.W2 is an exponentialmode or boundary
mode. The boundary modes are responsible for only ab
one percent of the density of states@16,17# and do not appea
to alter the universality of the eigenvalues. Equation~2! is an
approximation to the full elastomechanical wave equation
the limit where the wavelength is much larger than the thi
ness of the plate. The typical wavelength in our experime
R3479 © 1999 The American Physical Society
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is 8 mm, and the thickness of the plate is 2 mm. In this ca
Eq. ~2! is a good approximation.

We compare statistical observables of the eigenvalue
tion as a function of the parameter to analytical calculatio
In particular, we find that the data agree with calculations
the parametric number variancev(x) by Simonset al. @9#
and shows a linear behavior for smallx which is different
from semiclassical calculations@18#. To investigate correla-
tions in energy-parameter space, comparisons are made
theoretical calculations for the velocity autocorrelationc(x)
and the intralevel velocity autocorrelationc̃(w,x), which de-
scribes the correlations between the rate of change of ei
values separated in energy byw and in parameter byx @8#.
Good agreement is observed for selected values ofw and
overall x. Combined, these results provide experimental e
dence of the universality of a broad class of the statist
observables of parametric level motion that have been s
ied theoretically.

In the experiments we use an aluminum plate of thickn
2.0 mm, machined in the shape of a quarter Sinai stad
with radii 40 mm and 70 mm~see Fig. 1!. The plate rests on
three piezoelectric transducers, of which one is a transm
and two are receivers. We measure acoustic transmis
spectra of the plate using a HP 4395A network analyzer

FIG. 1. Transmission amplitude as a function of the freque
in steps of the parameterX. The flexural modes are joined by a sol
curve to guide the eye. Other modes pass through the diagram
out any interaction with the flexural modes. These are the in-pl
modes, which are not included in the data analysis~see text!. Inset:
Shape of the Sinai-stadium plate. The side which is polished
effect a parametric change is indicated byX.

FIG. 2. Left: Distribution of nearest neighbor spacingsP(s)
from all 63 measured spectra~crosses!, compared to the Wigne
distribution of RMT ~solid curve!. Right: Spectral rigidityD3(L)
for the experimental data~crosses! compared to the GOE resu
~solid curve!.
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sample of the transmission signal at different values of
parameter is shown in Fig. 1. The amplitudes of the re
nances depend on the location of the transducers but
eigenfrequencies are unchanged. The plate is kept i
temperature-controlled oven held at 300 K to within 1 mK.
vacuum system ensures that the air pressure is be
1021 Torr, which is low enough that air damping of th
plate is insignificant compared to other damping mec
nisms. Of the two classes of modes, flexural modes are m
sensitive to the presence of air damping than in-plane mo
because of the flexural out-of-plane oscillation. We find th
going from vacuum to atmospheric pressure, theQ factor of
the flexural modes decreases by at least a factor o
whereas theQ factor for the in-plane modes is unchanged

We first measure the transmission spectrum of the pl
then decrease the size of the plate by sanding off materia
the longest straight edge, as indicated in Fig. 1. The amo
of material removed is determined by measuring the mas
the plate to within 531025 grams. Approximately 5
31022 grams is removed each time and in all 6% of t
material is removed in 63 steps. The spectrum is measure
the interval between 100 kHz and 300 kHz. Periodically,
spectrum is also measured at 1 atm to identify the flexu
modes. After this separation, we find approximately 3
resonances, of which 25 drift out of the frequency windo
due to the overall increase in frequency when the size of
plate is decreased. A resonance frequency can be determ
to within 0.5 Hz by fitting the resonance peak to a Bre
Wigner function. We are confident that all eigenfrequenc
in the frequency window are detected, because it is imp
sible for the amplitude of a resonance peak to lie below
detection level for all 63 values of the parameter. The
sence of interaction of the flexural modes with the in-pla
modes is checked to within experimental accuracy by not
a lack of interaction at flexural in-plane encounters~see
Fig. 1!.

In the data analysis, the implementation of the normali
tion or unfolding given by Eq.~1! is of great importance.
Since the cumulative level density orstaircase functionfor a
freely vibrating plate was recently calculated@16#, both the
mean level spacing and the mean squared velocity are kn
analytically. This knowledge can be directly applied to o
data, which makes the data analysis very clean from a th
retical viewpoint.

Traditional statistical quantities such as the nearest ne
bor energy spacingsP(s), which measures short range co
relations, and spectral rigidityD3(L), which measures the
long range correlations,@19# are first used to test if the sys
tem belongs to the Gaussian orthogonal ensemble~GOE!

y
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e
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FIG. 3. Comparison of experimental data~crosses! and RMT
~solid curve! for the parametric number variancev(x).
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universality class. Heres and L correspond to the range o
energy normalized by the mean energy level spacing o
which the correlation is calculated. The data is shown in F
2 and complete agreement with GOE is observed. Fully c
otic systems are very rare and most chaotic geometries
regions in phase space which are integrable. The Sinai
dium geometry is no exception and is known to have sm
regions of integrability. However, if these regions are ve
small, they can support an integrable level only at very h
frequencies, and therefore complete agreement with GO
expected and observed.

FIG. 4. Velocity autocorrelationc(x) ~crosses! compared to
RMT calculations~solid curve!. Inset: Distribution of eigenvalue
velocities compared to a Gaussian distribution.
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We now present the main results, which consists of
correlations in the parametric variation of the eigenfrequ
cies. The parametric number variancev(x) is defined as

v~x!5^@n~«,x8!2n~«,x81x!#2&, ~5!

where the average is over the parameterx8 and energy«.
Here,n(«,x) is the staircase function which counts the nu
ber of energy levels at fixedx with energy lower than«. The
parameterx has been normalized according to Eq.~1!, as
explained above. The variance measures the difference in
number of eigenvalues which are below a fixed value
normalized energy«. Therefore, this quantity measures th
collective motion of levels under parametric change@18#.
Comparison of the data with theory is shown in Fig. 3. T
v(x) calculated from the data grows linearly from zero a
has a slope of 0.860.01, which is in excellent agreemen
with the calculated value ofA2/p;0.797 by Simonset al.
@9#. A saturation is expected at large values ofx and there-
fore thev(x) becomes sublinear at higherx.

To investigate the oscillations of the eigenvalues with
parameterx, a new set of measures are required that stu
the rate of change of the eigenvalue as a function of par
eter @7#. One example is theintralevel velocity autocorrela-

tion c̃(v,x), which correlates velocities separated by a d
tancex in parameter space and by a distancev in energy:
c̃~v,x!5

(
n,m

K d@«n~x8!2«m~x81x!2v#
]«n~x8!

]x8

]«m~x81x!

]x8
L

(
n,m

^d@«n~x8!2«m~x81x!2v#&

~6!
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The average is over the parameterx8. Using the supersym
metric nonlinears model developed by Efetov@20#, Simons
and Altshuler derived an integral representation for the in
level velocity autocorrelation. Another correlation is theve-
locity autocorrelation c(x), which correlates velocities tha
belong to the same energy level:

c~x!5K ]«~x8!

]x8

]«~x81x!

]x8
L . ~7!

The brackets denote an average over the parameterx8 and
the energy«. For this correlator no analytical results exi
for intermediate values ofx. Therefore, we compare our re
sult for c(x) to a curve calculated by Mucciolo@21# using
large GOE matrices that agree with the analytical results
the limit of large and smallx.

We first present the result for the velocity autocorrelat
c(x) ~see Fig. 4!. For values ofx smaller than 1, we find
good agreement with the numerical RMT curve@21#. At
larger values ofx; however, we see a deviation which
outside the experimental error bars. The shape of the co
lation function indicates that the slope]«(x)/]x changes
smoothly and has opposite signs nearx50.5 because the
-

in

e-

parameterx has been normalized to correspond to appro
mately one oscillation forx51. This behavior of the corre
lation functions indicates that, locally, there is a particu
length scale over which eigenfrequencies oscillate. The
tribution of velocities]«(x)/]x of the eigenvalues should b
a Gaussian with a mean value of zero. The data is show
the inset of Fig. 4. The data is close to a Gaussian, bu
slightly asymmetric with more velocities of small magnitud
that are negative than positive. We emphasize that the m
slope is zero, indicating that this discrepancy does not or
nate in the normalization of the eigenfrequencies. We beli
that the deviation is due to a finite data set. It appears tha
correlations are very robust and give good agreement eve
the velocity distribution is not exactly Gaussian.

To make a more stringent test of the correlations,
compare our data with the intralevel velocity autocorrelat
c̃(v,x) for v50.25, v50.50, andv51.0 as shown in Fig.
5. We compare our data to a numerical evaluation of
integral representation of this correlator@8#. In calculating
these quantities we have averaged over a small energy
dow of dv50.03 which is also done in the theoretical ca
culations. The occurrence of the peaks in the correlat
functions and the systematic increase of the value ofx where
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the peak occurs can be understood from the fact that nea
avoided crossing, one has to go across by nearly as m
along the normalized energy axis as along the parameter
to encounter a similar slope~see Fig. 1!. Comparison of the

FIG. 5. Intralevel velocity autocorrelation forv50.25 ~dia-
monds!, v50.5 ~triangles!, and v51.0 ~squares!. The theory
curves correspond to analytical calculation of Simons and Altsh
@8# using supersymmetry techniques.
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data in Fig. 5 shows very good agreement for all three val
of v, validating the theory.

In conclusion, we have investigated experimentally t
parametric-level motion of the flexural modes of a free
vibrating plate as a function of the size of the plate. We ha
used our data to calculate statistical quantities that probe
parametric motion of the levels, and found agreement w
the universal predictions of RMT. The agreement with RM
suggests that the universal predictions for parametric-le
motion extends beyond quantum chaotic systems to a w
range of wave systems, including acoustical waves.
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